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The two-dimensional thermal boundary layer over a finite hot film embedded 
in a plane insulating wall, with a shear flow over it which reverses its direction, 
is analysed approximately using methods similar to those previously developed 
for viscous boundary layers (PedIey 1976). The heat transfer from the film is 
calculated both for uniformly decelerated and for oscillatory wall shear, and 
application is made to predict the response of hot-film anemometers actually 
used to measure oscillatory velocities in water and blood. The results predict 
that the velocity amplitude measured on the assumption of a quasi-steady 
response will depart from the actual amplitude at values of the frequency 
parameter St greater than about 0.3 (St = SZX,/U,, where SZ = frequency, 
U, = mean velocity, X, = distance of hot film from the leading edge of the 
probe). This is in good agreement with experiment. So too is the shape of the 
predicted anemometer output as a function of time throughout a complete 
cycle, for cases when the response is not quasi-steady. However, there is a 
significant phase lead between the predicted and the experimental outputs. 
Various possible reasons for this are discussed; no firm conclusions are reached, 
but the most probable cause lies in the three-dimensionality of the velocity and 
temperature fields, since the experimental hot films are only about 2.5 times as 
broad as they are long, and are mounted on a cylinder not a flat plate. 

1. Introduction 
When a metallic film flush with the surface of an insulated solid boundary is 

heated to a temperature somewhat greater than that of the surrounding fluid 
medium, and when that fluid flows past the boundary, the rate of heat loss from 
the film is related to the flow. If the flow is steady, if the forced heat transfer 
greatly exceeds any free convective heat transfer, if the geometry of the film 
is such that two-dimensional boundary-layer theory can be applied to the thermal 
boundary layer on the film, and if the thickness of this thermal boundary layer 
is sufficiently small compared with the lateral distance over which the fluid 
velocity gradient, or shear, varies, then both theory and experiment show that the 
rate of heat transfer is directly proportional to the *-power of the vaIue of the 
shear at the wall (Liepmann & Skinner 1954). Thus the hot film can be used to 
measure wall shear. Furthermore, if the film is embedded in the surface of a 
small probe which can be inserted into a stream of flowing fluid, then (again 
assuming that steady two-dimensional boundary-layer theory is applicable) the 
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wall shear on the film is proportional to the #-power of the stream velocity. 
Hence the heat transfer is proportional to the $-power of th6 stream velocity, 
and the device can be used to measuie velocity. 

In  unsteady flow, however, the variations in the wall shear have a larger 
relative amplitude than those in the stream velocity, and also have a phase lead 
over it. Also the heat transfer lags the wall shear. Furthermore if the flow velocity 
comes close to zero or reverses its direction, the viscous boundary layer cannot 
respond in a quasi-steady manner, and if the wall shear comes close to zero or 
reverses its direction (which can happen with a unidirectional free stream) the 
thermal boundary layer cannot be quasi-steady. In  particular, the heat transfer 
is positive whatever the direction of wall shear, and has a minimum value well 
above zero when the shear passes through zero. Hence to use the steady cali- 
bration curve in measuring unsteady velocities is potentially dangerous, and 
careful unsteady calibration experiments are needed. For the hot-film anemo- 
meters which have been used to  measure blood velocities in large arteries, such 
calibrations have been performed in sinusoidally oscillating flow by Seed & 
Wood (1970) and by Clark (1974). Both studies showed that the probes responded 
quasi-steadily until the frequency parameter nX,/U, exceeded a number of the 
order of 0.3 (here SZ is the angular frequency of the oscillations, X ,  is the distance 
of the hot film from the leading edge of the probe and U, is the mean velocity of 
the free stream). 

A theoretical analysis of the response of such probes was performed by Pedley 
( 1 9 7 2 ~ )  for the case where neither the free-stream velocity nor the wall shear 
came close to  zero. However, the early reversal of wall shear renders the theory 
inapplicable to the more interesting experiments in which large departures from 
quasi-steady behaviour are observed, and the results therefore have little 
practical value. It is the purpose of the present paper to extend the theory of 
the thermal boundary layer to cases in which the wall shear reverses its direction 
or comes close to zero. The methods will be similar to those already developed 
for viscous boundary layers in reversing flow (Pedley 1976), but certain details 
are different and have to be examined carefully. 

The (approximate) theory is developed in the next section, and in $ 3  it  is 
applied to the case of a uniformly decelerating shear which reverses its direction 
at time t" = 0. The results for this case are used to guide the choice of 
previously undetermined constants, which are kept fixed subsequently. I n  $ 3 
the theory is also applied to predict the heat transfer in a sinusoidally oscillating 
shear with non-zero mean, and the results are expected to be applicable to the 
use of hot films for measuring wall shear in oscillating pipe flow. I n  $ 4 the theory 
is applied to the hot-film anemometers used in sinusoidally oscillating free 
streams by Seed & Wood (1970) and by Clark (1974); in this case it is necessary 
first to calculate the wall shear, by a direct application of the theory of Pedley 
(1976). The shape of the predicted curve of heat transfer against time agrees 
very well with experiment, but its phuse shows a lead of approximately &r over 
the experimental curve (in the experiments the heat transfer lags behind the 
free stream, while in the theory it leads the free stream). Such a phase lead was 
also observed by Pedley (1972u), and is therefore not an aberration introduced 
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by the approximations required to deal with reversing shear, but becomes 
apparent in the first departure from quasi-steady behaviour. The assumptions 
involved in applying the present theory to the hot-film velocity probes are 
examined closely in fi 5, and it is concluded that the most probable cause of the 
unwanted phase lead lies in the three-dimensional nature of the velocity and 
temperature fields over the hot film, because the probe is not mounted on a 
flat plate but on a cylinder, and because diffusion in the cross-stream direction 
tends to increase the 'thermal inertia' of the probe. 

2. Development of the approximate theory 
The heated film is modelled as the region 0 < 2 6 I of the solid plane Q = 0, 

of which the remainder allows no heat to p y ,  and the fluid velocity over i t  is 
taken to be in the D direction and equal to S (t)$J, where 8 is the wall shear rate 
(dependent on time t) and a caret denotes a dimensional quantity. The tem- 
perature Tl of the film is taken to exceed the temperature To of the oncoming 
fluid. The object of the theory is to calculate the temperature T everywhere 
over the film, and hence to deduce the rate of heat loss from the film. 8 is taken 
to  reverse direction at t" = 0, bei2g positive for t" < 0. We suppose that, long 
before t" = 0, the PBclet nuyber Z2S/ic (where K is the uniform thermal diffusivity 
of the fluid) is large and S not very rapidly varying, so that there is a thin, 
approximately quasi-steady thermal boundary layer over the film, growing from 
the leading edge D = 0. Similarly, long after t" = 0, we expect there to be a quasi- 
steady thermal boundary layer growing from the trailing edge D = 1. The present 
theory is intended to give an approximate description of the transition between 
these two states. 

We introduce dimensionless variables as follows: 
A A  

t = t/to, X = $?/I?, y = $/(f K)i, s(t) = 8(t")/So, 

8 = (T - To)/(T1- To), (1) 

where i0 and So are appropriate time and shear scales, to be chosen according 
to the application. The temperature equation then reduces to 

where 

a dimensionless parameter. I n  the application to  the uniformly decelerated and 
the sinusoidally oscillating wall shear (5 3), we choose f0 = (Z2/Si K)*, so that 
/3 = 1 and the scale for the thermal-boundary-layer thickness, ( f O ~ ) * ,  is equal 
to (lic/S0)* as in the steady case (LBvCque 1928). In  the application to the hot-film 
anemometer (§  4) a different choice for io is more convenient. The boundary 
conditions on 8 are 

8 = 1  on y = O ,  8+0 as y+m. 

The approximate solution is constructed in the same way as for the viscous 
case (Pedley 1976). Thus we assert that at every point on the film (every 2) 
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there is a time t = - tl(x) before which the temperature distribution is approxi- 
mately quasi-steady, representing a balance between convection and diffusion 
with only a small correction for the 0, term in (2). We take the solution for 
t < - t, to be given by the fist two terms of a series whose leading term is exactly 
quasi-steady; this series was developed by Pedley ( 1 9 7 2 ~ ) .  We further assert 
that there is a time t,(x) such that for t > t, the solution is given by the same two 
terms, except that the leading edge is at x = 1 not x = 0. For intermediate times, 
during which S(t) passes through zero, diffusion will proceed, but convection 
will be relatively unimportant ; nevertheless we expect the boundary-layer 
approximation still to  be applicable. We assert that the temperature is given by 
a solution of (2) without the middle convective term. The big approximation 
of the theory is the assertion that the transitions between almost quasi-steady 
and purely diffusive solutions take place abruptly, not gradually. 

The full approximate solution for 0 (in the casep = 1) is thus given by (4)-(6), 
as follows : 

(4) 8 = eo(ql) + 3 9 ~ * ~ - 4 ( t ) d ( t )  el(V1) for t G -tl(x), 

where 

0,(7,) = I -~ j r  e-+d7, c = i/r(+) = 1.120, 

and 0, satisfies 

0; + 37; 0;- 67, 0, = - Cy, exp ( - $), 0,(o) = 0,(00) = 0; 

e = 0~(7/,) - 3+(i - [ - 8(t)]4 S( t )  8,(7,) for t a + t2 (x) ,  ( 5 )  

0 = erfcgO for -tl(x) < t < t 2 (x ) ,  (6) 

where 7, = y[ - W / 9 P  - 4 1 9 ;  

70 = BY [t + to(x)l-4 where 

and -to(%) is a virtual origin of the diffusive solution which must be determined 
along with tl(x) and t,(x). 

The choice of takeover times - t, and t,  is more difficult than in the viscous 
case and the simple thermal case of Pedley (1975). There it was argued that the 
diffusive solution would take over from the initial quasi-steady solution at a 
given value of z when the influence of the leading edge ceased to be felt there, i.e. 
when fluid particles which had passed the leading edge first failed to arrive a t  x 
before being swept away by the reversing flow. Similarly the new quasi-steady 
solution would take over from the diffusive solution when fluid particles which 
had passed the new leading edge first arrived at x. Thus, for example, t, was 
given by 

1 - 5 = 1; U(t)  dt, 

where U ( t )  was the free-stream velocity. In  the present case, however, there is 
no unique free-stream velocity because the flow consists of a uniform shear and 
the velocity is proportional to y. In  order to apply a similar condition we must 
fix the convection velocity by picking a particular value of y. It would seem 
sensible to choose a value in some way representative of the boundary-layer 
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thickness at the take-over time. We therefore pick y such that ql(or 7,) takes 
a particular value ;if, (or ; i f z )  at position x and time - t ,  (or + t , );  the values to be 
used for ;if1 and 7, are.discussed later. From these considerations, then, we 
determine t,  to be the solution of 

x = y / l t l  S ( t )  dt when y = ;ifl[9x/S( - tl)]*, 

0 

- tl 
i.e. of [+"2S( - t l )p = q1/ s(t) dt. 

Similarly 
[ - $( 1 - x)25(t2)]4 = 7, C"" - 8(t)] dt. 

( 7 )  

J O  

The two-term series solutions for t < - t ,  and t > t,  (equations (4) and ( 5 ) )  
were shown by Pedley ( 1 9 7 2 ~ )  to be accurate (i.e. differing by only a little from 
the three-term expansion) only if the coefficient of Ol(ql) [or 01(q2)], which we 
denote by A, (or A,), remains sufficiently small. A precise condition was not 
derived, but examination of the results of that paper (translated into the notation 
of this) suggests that accuracy will be adequate as long as (A,  1 (or lA,l) is less than 
about 0.5,t where 

( 9 )  I h,(t) = 34x48-9(t) B(t) ,  

A,($) = 34( 1 - x)* [ - h'(t)]-t [ - &'(t)]. 

(The parameters lAll and lA,l are comparable to the quantities el and e2 defined 
by Pedley (1976) for the viscous boundary layer.) This criterion can be used to 
check the values oft, and t, given by ( 7 )  and (8) : if the value of I /Il( - t,) 1 or 1 A&,) I 
greatly exceeds 0.5, then the series solutions will be inaccurate for values o f t  
close to - t ,  or t,; however, if they are much less than 0.5, then the diffusive 
solution will probably be less accurate than the (rejected) series solution. Indeed, 
for cases in which h'(t) comes close to zero without reversing, so that no value of 
t ,  can be obtained from ( 7 ) ,  we use the criterion IA,(-t,)l = 0.5 to determine 
t,  (t  = 0 is then the time of minimum shear). Little would probably be lost by 
using (9) to determine t ,  and t ,  in general, but the proposed method has a sounder 
physical basis. 

We still have to determine the value5 of q1 and ;ifz used in the definitions of 
t ,  and t ,  (equations (7) and (8)), as well as the virtual origin -to(%) of the diffusive 
part of the solution. The latter must be chosen to ensure some continuity at 
t = - t, between the diffusive solution and the approximately quasi-steady one 
from which it takes over. In  the viscous case the most fundamental single 
parameter representing the boundary layer is the displacement thickness, 
continuity of which ensures continuity of mass flux deficit. I n  the present case 
the choice of to is bound up with the choice of 7,. A self-consistent way of choosing 
both is to require that the 'centre of mass' of the temperature distribution be 

t The critical value of 0.5 is derived from the observation onp. 338 of Pedley (1972a), 
that, for the case S = 1 +u sin wt, inaccuracy first begins to appear close to wt = Qn 
when u = 0.5 and when 6, equal to 3 4 w d  in the present notation, is given the value 2.0. 
The maximum value of I All in that case is actually 0.49. 
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continuous a t  t = - t,, and then the natural choice of ?j, is the value of yl at the 
centre of mass. This is the choice we adopt. The centre of mass is defined by 

From (4) and (6), continuity of this quantity requires that 

&(to - 4) = [9x/fJ( - (Q13 %, 
where 

and 
CO = loa rl @o(%) dyl = 0.187, 

cl = /ow Oo(yl) dy,  = 0.505, 

c2 = joa yl8,(y,) dy,  = 0.00302, 

c3 = loa el(yl) dy,  = 0.0451, 

all correct to three significant figures. Note that v1 itself depends on x and t ,  
through A, (equation (9)). 

An alternative choice of to, which however gives less guidance on a suitable 
choice for T1, is obtained by making the longitudinal heat flux continuous. This 
is physically reasonable because, if it  is not continuous, there is a singularity in the 
temperature gradient on the hot film which could (if care were not taken to 
exclude it) result in significant errors in the predicted overall heat-transfer rate 
from the film. This would require that 

be continuous, and hence, from (4) and (6), that 

t o  - t,  = [9x/fJ( - t1 )y  [C, +A,( - t ,) C2]. 

A third possible choice would be to make 

continuous, in which case 

47r-l(t0 - t ,) = [9X/S( - tl)]3 [C, +A,( - t ,) c3y. (10c) 

The differences in the predictions of heat transfer resulting from these three 
choices of to are examined for the simple case of a uniformly decelerating shear 
in the next section, and are shown to be small. Choices other than (11) for ql 
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(and the equivalent expression for 7,) are also examined, and these make a 
considerable difference. However, in the simplest example, (1 1) gives a value 
of A,( - t , )  close to 0-5 (while the other choices do not), and (1 1) is the only choice 
with a priori justification, so it  is retained. 

The object of the theory is to calculate the overall time-dependent heat 
transfer from the film, proportional (in dimensionless terms) to 

1 

0 
a t )  = 1 [- 41,=0dx. (12) 

The integrand is given by the solutions (4)-(6) to be 

[ ~ ( t ) / 9 4 )  [C - A, 0;(0)] for t 6 - t,, ( 1 3 4  

- B,\,=, = [ - s ( t ) /g( l -  x)]* [C - A, 0;(0)] for t 2 t,, (13b) 

( 1 3 4  

where 0;(0) = 0.143. At each value oft, the value of x, say xT, a t  which there is 
transition between a quasi-steady and the diffusive solution must be calculated 
if it exists, and Q evaluated by integrating either (13a) from 0 to xT and (13c) 
from xT to 1, if 8(t)  > 0, or (13c) from 0 tox, and (13b) from xT to 1, if 8(t) < 0. 

1 ~ [r(t0 + t , )]4 for - t ,  < t < t,, 

3. Heat transfer with given wall shear variation 
Uniform deceleration 

I n  order to test various possibilities for V,, 7, and to, we begin by considering the 
simplest possible form of 8(t), a uniform deceleration through zero, i.e. 

S( t )  = - t .  

[In dimensional terms this corresponds to a velocity @2 = -A@,  the shear and 
time scales 8, and go of (1) being given by 8, = (Z2A3/~)* and to = (P/A~K)*. ]  In  
this case (7) and (8) give 

whence (9) gives 
tl = (44% (2/71)4 t ,  = [9(1 -%)If (2/72)$, (14) 

A,( - t l )  = - 1.571, A,(t,) = + 1-57,. (15) 

If 7, is given by (1 l), and ?j2 by a similar equation involving A,, substitution of 
(15) yields -A, = 0.58 and A, = 0.53, which are close to the value of 0.5 above 
which the approximately quasi-steady solutions become inaccurate. If the 
second term in the quasi-steady solutions (4) and ( 5 )  is ignored (and hence the 
second terms in the numerator and denominator of (1 1) are also ignored) then 
-A,( - t,) and A,(t,) are both equal to 0.55, suggesting that the second term does 
not make a large difference; the heat-transfer calculations will confirm this. If 
7, and 7, are chosen to be somewhere other than at the centre of mass of the 
temperature distribution, then -A,( - t,) and A,(t,) will take different values: 
if ?jl and 7, are taken to be further out, - t ,  and t ,  are smaller, and the values of 
- A, and A, at take-over increase, thereby presumably decreasing the accuracy. 
If ?jl and 7, are taken closer to the wall, the values of -A, and A, decrease. 
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Three cases have been examined numerically to test the effect of such changes 
on the predicted heat transfer; in each case the second terms in the series solutions 
(4) and ( 5 )  were ignored for convenience. Let the value oft, given by (14) with 
7, equal to C,,/C, (see (1 1)) be 2;; then the three cases taken were 

tl = k,Z, with k, = 0.5, 1.0, 1-5 (16) 
(when k, = 0-5, ?jl M 3-2C0/C1 and -A, is increased by a similar amount; when 
k,  = 1.5, 7, M 0.5C0/C1). The second take-over time t,  was also changed by the 
same factor. 

The numerical solutions for this shear variation also have to distinguish 

FIGURE 1. Dimensionless heat transfer per unit length ( -@wlv- , , )  as a function of time t 
for uniformly decelerating shear. Dotted curve is quasi-steady in each case. (a) Diffusive 
solutions compared for three different values of k,(equation (16)); solid curve (k, = 1.0) 
is the ‘standard’ case. (b) Diffusive solutions compared for three different values of k, 
(equation (17)). Solid curve represents ‘standard’ case (k, = 0.175), including two terms 
of the appIoximately quasi-steady expansions. Broken curves: upper, k, = 0.15; lower, 
k, = 0.2. 
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FIGURE 2. Dimensionless heat transfer Q from the whole film as a function oft for uniformly 
decelerating shear. . - I a ., quasi-steady; - , ‘standard’ theory with two terms of the 
approximately quasi-steady expansions; - --, ‘standard’ theory with only one term. 

between the three choices for to (equations ( 1 O a - c ) ) .  Again the second term in 
the quasi-steady series can be ignored for convenience, and in that case the three 
choices are equivalent to 

to = t1 -k k,[gX/8( - t1)lQ (17) 

with k, = 4CilmCq = 0.175 (casea), 
k2 = Co = 0.187 (case b),  
k, = inC2, = 0.200 (casec). 

The differences are small, and the numerical results confirm that this choice is 
not a crucial one; we subsequently adhere to the first, (10a). 

Before presenting numerical results, we may note that the heat transfer can 
be calculated analytically for the case of uniformly decelerating shear when the 
second term in the quasi-steady series is ignored. This calculation provides a 
useful check on the numerical results, but has no intrinsic interest and will not 
be reproduced here. 

The results are shown in figures 1 and 2. Figures l ( a )  and ( b )  show graphs 
of -O,l,=o against time for one particular position over the a m ,  x = 0.5. In  
each case the dotted curve is the quasi-steady solution. In  figure 1 (a) the three 
other curves represent the diffusive solution with to given by (17) with k, = 0.175 
and with three different vahes oft, given by the three values of k, in (16). Note 
that only one term of the series (4) or (5) is included in each of the quasi-steady 
regions. The solid curve is for k, = 1, which can be regarded as the standard 
case since this is the only value for which a reasonable physical justification can 
be given; the broken curves are for kl = 0.5 and k, = 1.5. The discontinuities 
at  the times of transition between quasi-steady and diffusive solutions are 
disturbingly large, especially at  t,, when a new quasi-steady solution takes over 
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from the diffusive solution. The choice of to is made to ensure some continuity 
at t = - t,, but there is no freedom to take account of the increasing convection 
from the trailing edge until t = t ,; we shall have to accept that the present 
method leads to an underestimate of heat transfer for a period just after shear 
reversal. It can be seen that the lower value of k, leads to the smallest dis- 
continuity, but that is solely because there is a shorter period of diffusion. We 
know from the previous discussion that the quasi-steady solution will be in- 
accurate between the times marked A and B and between C and D. 

In  figure 1 ( b )  the dotted curve is again the quasi-steady solution. Here the 
three diffusive solutions represent three values of the constant k, in ( 1 7 )  (k ,  = 1 
in each case): the solid curve is the ‘standard’ case with k, = 0.175; the two 
broken curves are for k, = 0-15 (upper) and 0.20 (lower). It is clear that these 
differences are not great, and little error will result from adhering to k, = 0.175 
(or ( l o a ) ) .  The smoothest-looking solution (at least at  t = - t l )  is that which 
makes lo* edY 

continuous (equation ( loc ) ) ,  but this has no physical justification. To choose it 
would not necessarily be correct; it makes the heat-transfer curve smoother 
because the quantity made continuous is weighted more heavily towards the 
wall region than in the other cases. 

The addition of the second term to the quasi-steady series makes a negligible 
difference to the diffusive part of the solution, but does of course affect the 
solution in the ‘quasi-steady’ regions. This is shown by the solid curves in figure 
1 ( b ) .  There is some reduction in the severity of the discontinuities at  t = - t ,  
and t = t,, and therefore the second term is worth retaining, but the difference 
is slight. 

The discontinuities are less apparent in the curves of total film heat transfer 
(&, equation (12))  against time, as can be seen from figure 2. Once again the 
dotted curve represents the quasi-steady solution, the solid curve represents the 
standard solution with two terms of the quasi-steady series, and the broken 
curves show how taking only one term would alter the results. From the previous 
discussion we can expect an underestimate of heat transfer after the shear 
reversal, at  t = 0; nevertheless we can clearly see that a considerable departure 
from quasi-steady behaviour is to be expected from just beforereversal (t = - 0.1) 
to some considerable time after ( t  = 1.4, say). 

Sinusoidal oscillations 

The form of shear variation most likely to be used in the unsteady calibration 
of shear measuring probes is a sinusoidal oscillation. If, in dimensional terms, 
the wall shear is 

then the dimensionless shear is 

where o1 is the dimensionless angular frequency, equal to Q(E2/S~ ~ ) f  (see ( 1 )  
et seq.). 

3(t) = So( 1 +a, cos Qt), 

S(t)  = l+a lcoswl t ,  (18) 
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If a, > I, so that the shear reverses twice each cycle, the methods of this 
paper are applicable to the. first reversal (with a suitable shift of time origin) 
as long as (7) has a solution for t ,  for each 11: in the range (0,1). They are also 
applicable to  the second reversal as long as a quasi-steady phase intervenes after 
the first diffusive phase. If no reversed quasi-steady phase arises, the first 
diffusive solution must be continued throughout the second reversal, until the 
forwards quasi-steady solution takes over again sometime before the shear 
maximum. If a, < 0, so that there is no shear reversal, then the diffusive solution 
is chosen to take over a t  the time when - h,(t) first takes the value 0.5; if there 
is no such time, the (approximately) quasi-steady solution is valid throughout. 
If w1 is too large for the quasi-steady solution to be applicable anywhere, this 
procedure misleadingly indicates a short range of times (near that of maximum 
shear) when it is applicable. This can be checked by working out the coefficient 
of the third term in the quasi-steady series (Pedley 1972a), and if that exceeds 
about 2 at t = 0 and 2 = 1, i.e. if w! 2 2 (1 +a1)g/3b,,  the quasi-steady solution 
is not accurate, and the present methods should not be used. 

The procedure for computing the film heat transfer as a function oft is straight- 
forward, and follows almost exactly the same lines as the wall shear calculations 
of Pedley (1976). No further details will be given, therefore, and we proceed 
straight to the results. These are presented in figures 3 (a), ( b )  and (c) for three 

I I  
0 f n  n t n  2 n  

6Jlt 
FIGURE 3(a). For legend see next page. 
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values of a1 ( =  10.0, 2.0 and 0.9) and for two values of w1 (=  1.0 and 0.1); the 
quasi-steady curve is shown in each case for comparison. Higher values of 
frequency were not chosen because the theory rapidly becomes inapplicable; 
however, w1 = 1.0 corresponds to a frequency of about 10 Hz for a 0.1 mm film in 
water or blood at a mean shear rate of 100 s-l, which is considerably less than that 
usually encountered in the cardiovascular system so w1 will normally be < 1.0. 

The results for a, = 10.0 (figure 3a)  show that in this case the two reversals 
are independent, with a period of approximately quasi-steady (but reversed) 
heat transfer in between. Each reversal looks like the single reversal of figure 2, 
with both t and Q appropriately rescaled. For a1 = 2.0 (figure 3b) ,  however, 
reversed quasi-steady heat transfer is not attained between the two reversals, 
at least when w1 = 1.0. This indicates that some part of the film (near x = 0) 
experiences purely diffusive heat transfer for the whole of the reversed phase. 
Figure 3(c) is an example of a non-reversing case (a, = 0.9), in which diffusion 
must nevertheless take over on much of the film for a part of each cycle (of 
course, the region very near x = 0 will always have quasi-steady heat transfer 
in this case). All the results of figure 3 show a slight phase lag behind the quasi- 
steady solution at periods of maximum shear (associated entirely with the 
second term in the solutions (4) and (5)), and a rather larger phase lag near 
times of minimum hei t  transfer. However, the latter may merely reflect the 
inaccuracy inherent in the method. 

4. Application to the hot-fiIm anemometer 
In  this section we endeavour to reproduce theoretically the conditions of the 

unsteady calibration experiments of Seed & Wood (1970) and of Clark (1974), 
each of whom used a probe like that depicted schematically in figure 4 (they 
used other probes as well, but details of the output as it varies throughout the 
cycle were given only for this). The film is embedded in an insulating substrate 
and mounted on the surface of a hypodermic needle which is bent into an L-shape 
so that the point can be aligned with the flow after insertion through an artery 
wall. The calibration experiments were performed in water; Seed & Wood 
oscillated the probe in a steady mean flow; Clark did the same at frequencies 
above 15 Hz, but held the probe fixed in an oscillating flow at lower frequencies. 
The relevant dimensions (as marked in figure 4) and operating conditions in 
each case are given in table 1. The flow velocity @(f) past the probe was in each 
case taken to be sinusoidal, with angular frequency Q: 

O(i)  = u,( 1 +a cos wt) ,  

where t = fLL/U,, and w = U / U ,  is the dimensionless frequency; note that 
wX,L/L is the same as the Strouhal number X t  defined by Clark (1974). 

In  order to apply the theory of this paper and of Pedley (1976) we must make 
a number of assumptions, as follows: 

(i) The flow field on the probe is effectively two-dimensional. 
(ii) The flow over the probe resembles that over a flat plate (i.e. has zero 

pressure gradient in steady flow). 
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FIUTJRE 4. Sketch of hot-film anemometer probe. The dark rectangle represents the film; the 
shaded region around it represents the insulating substrate. Lengths I, L, X ,  are defined. 

Temper- 
ature of Prandtl 
ambient number p (see 

1 9 0  L water V/K text) 

Seed & Wood (1970) 0.01cm 0-15cm 0.3cm 37°C 4-6 14.0 
Clark (1974) 0.02cm 0.25cm 0-5cmt 20°C 6-9 9-6 

t Clark did not report the value of L, but since he did not use the probe in reversing 
flow it is irrelevant. We choose L = 0-5 cm so that X0/L  can be taken equal to 0-5 in each 
case. 

TABLE 1 

(iii) The distance X, of the film from the probe’s leading edge (and that from 
the trailing edge, L - X,) is large enough for viscous boundary-layer theory to be 
applicable in calculating the shear on the fdm. 

(iv) The film length 1 is sufficiently large for thermal boundary-layer theory 
to be applicable in calculating heat transfer. 

(v) The temperature field over the film is effectively two-dimensional. 
(vi) The ‘thermal wake’ is negligible; i.e. the fact that already heated fluid 

is carried back over the film during shear reversal can be ignored. 
(vii) The thermal boundary layer over the film is sufficiently thin compared 

with the viscous boundary layer at that location that curvature of the velocity 
profile does not influence heat transfer. 

(viii) The film length Zis sufficiently small for the shear over it to be independent 
of x. 

(ix) The normal velocity over the film is too small to affect heat transfer. 
(x) Free convection is negligible. 
(xi) Conduction in the substrate is negligible. 
Assumptions (viii)-(xi) were adequately justified by Pedley (1972a) [(viii) and 
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(ix) are in fact equivalent, requiring l /Xo  < 13; the validity of the rest is discussed 
in the next section. 

The dimensionless shear 8(t) on the film can now be derived directly from 
equations (14u-c) of Pedley (1976), where it is referred to as 7 ,  in the manner 
described in Q 3 of that paper. The quantity x there is equal to &/L, and is taken 
to be 0.5 in each case (see table 1). Then the methods of this paper can be used 
to predict the heat transfer. I n  order that no rescaling of time is required between 
the output of one paper and the input of the next, we redefine the time scale 
to (equation (I)) to be equal to L/Uo. The scale 8, for shear is then (U$/vL)*, so 
the quantity p in (2) and (3) takes the value (LIZ) ( K / Y ) * ,  which is also given in 
table 1 for each set of experiments. 8 ( t )  must be multiplied by p wherever it 
occurs in the theory of Q 2. 

The results will be presented in terms of the velocity which would be inferred 
from the heat-transfer measurements if the quasi-steady relationship between 
velocity and heat transfer were assumed (Clark (1974, figure 9) presented his 
measurements in this way). The complete cycle is examined for five cases, as 
listed in table 2. Seed & Wood (1970) reported some measurements in reversing 
flow and some in non-reversing flow; however their data were presented in terms 
of the ratio between actual probe output and the output which would have been 
measured at the known instantaneous velocity in steady flow. When the latter 
becomes very small, inferring velocities from their data becomes very inaccurate. 
Therefore only two of their cases are chosen. Clark did not examine reversing 
flow, but in two of the three cases he presented the shear on the probe did reverse, 
and the experiments provide a reasonable test of the theory. The two Seed & 
Wood cases are presented in figures 5(a)  and (b ) ;  the three Clark cases are 
presented in figures 6 (a),  ( b )  and (c) .  In  each case the actual velocity wave form 
is also shown (so, in figure 5 (b ) ,  is the rectified form of it which a perfectly quasi- 
steady anemometer would measure). 

Figures 5 (a)  and ( b )  show reasonable qualitative agreement between the theory 
and Seed & Wood’s experiments, especially near the points of flow reversal, 
although in each case the apparent velocity inferred from their data when the 
actual velocity is very low is enormous, and must be regarded as uncertain. Not 
enough experimental points were given in each cycle to constitute a good test of 
the theory. In  the approximately quasi-steady regimes the predictions show a 
slight phase lead over the experiments, which rather follow the exactly quasi- 
steady curve. This phase lead comes from the phase lead of wall shear over 
free stream velocity. Apparently the heat transfer in practice lags behind the 
wall shear more than is predicted by this theory (as also remarked by Pedley 
1972 a). 

Figure 6(a)  shows an example in which the shear stress does not approach 
close enough to zero for a diffusive regime to appear a t  all. It is included in order 
to show that the phase lead of theory over experiment is quite pronounced here 
too (about in). Figure 6 ( b )  shows a case in which the flow does not reverse but 
the shear does. A comparison between the theoretical curve and the open tri- 
angles shows excellent agreement, apart from a slight underestimateof the maxi- 
mum heat transfer in the approximately quasi-steady regime. Unfortunately, 
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Flow Shear 
Author@) a 0 reversal ? reversal P Figure 

Seed & Wood 0.98 0.28 No Yes 5 (4 
Seed & Wood 2.8 0.75 Yes Yes 5 (b)  
Clark 0.31 0.44 No NO 6 (4 
Clark 0.56 0.80 No Yes 6 (b)  
Clark 0-68 0.80 No Yes 6 (4 

TABLE 2 

50 

3Q 

-20 I 1 I I I 

0 f n  n in - 4. n 

wt 

FIUURE 5. Dimensional velocity U (equation (19)) plotted against wt for two cases from 
Seed & Wood's (1970) experiments. * - -, actual velocity, which would be measured by a 
perfectly quasi-steady instrument (including the rectified signal during flow reversal in 
( b ) ) ;  - , predictions of the velocity which would be recorded by the instrument; a, 
measurements. (a) a = 0.98, o = 0.28; (b)  a = 2.8, o = 0.75. 

A 
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FIGURE 6. As figure 5 for three cases from Clark’s (1974) experiments. (a) a = 0.31, w = 0.44; 
(b) a = 0-56, o = 0.80; (c) a = 0.68, w = 0.80. The open triangles in (b) and (c) are the 
measured points given a phase lead of 4.. 
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FIGURE 7. Ratio of amplitude of probe output to amplitude of actual oscillating velocity 
plotted against Strouhal number St ( = 0.50). 0, Clark’s experiments; A, Seed & Wood’s 
experiments: 0 ,  A,  present theory. 

however, the open triangles are not the experimental points, which are in 
fact represented by closed circles; the open triangles are the same points given 
a phase shift of an. In  other words the phase lead, remarked on above, has become 
considerable, but the shape of the heat-transfer response, especially near mini- 
mum velocity, is very well predicted. Figure 6 ( c )  shows another case of even 
larger amplitude non-reversing flow. Again the agreement between theory and 
the open triangles is quite good (apart from underestimating the heat-transfer 
maxima), and again these represent a phase lead of $IT over the experimental 
points. Note that the in figure 6 (a)  and the &r in figures 6 (b )  and (c )  represent 
an approximately constant time lead, independent of frequency. Possible 
reasons for the phase lead are discussed in the next section. 

In most of the cases he studied, Clark did not calculate the apparent velocity 
throughout the cycle, merely at the times of maximum and minimum probe 
output. He then plotted the ratio of the apparent velocity amplitude to the 
actual velocity amplitude against the Strouhal number St (=  0.5~); a value 
significantly different from 1 indicated that the quasi-steady calibration was 
inapplicable. Pigure 7 shows his results (closed circles) together with the pre- 
dictions of the present theory for six of his cases (open circles) and four of Seed 
& Wood’s (open triangles); the two closed triangles are Seed & Wood’s experi- 
mental results, corresponding to the open triangles at the same values of St. 
In  cases where the heat transfer shows a second maximum (as in figure 5 ( b )  
or 6 c ) ,  this is interpreted as measuring a negative velocity, even when the free 
stream does not reverse. The results show good agreement between experiment 
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and theory up to a value of St of about 1.0; above that value the theory is not 
directly applicable. There is considerable scatter in both sets of results at  any 
given value of St, especially around 0-3, which is associated with the fact that 
the result depends on amplitude as well as on frequency. Nevertheless, the 
theory confirms the experimental fhding that the quasi-steady calibration 
cannot be used for St 2 0.2. Even for smaller values of St, the theoretical results 
(e.g. point A on figure 7) underline the fact that the quasi-steady calibratian 
will break down if the amplitude of the oscillation is sufficiently large that the 
shear on the probe reverses. 

5. Discussion of assumptions 
Here we investigate assumptions (i)-(vii) (pp. 525-4526), with the aim of 

elucidating the discrepancy between theory and experiment, particularly the 
phase lead in figures 6 and 6. It was predicted in Q 3 that the phase lag of heat 
transfer behind wall shear is not large for values of w1 up to 1.0 (equivalent 
to the range of w considered in §4),  while the phase lead of wall shear over 
free-stream velocity approaches an for these values (Pedley 19723). Hence our 
discussion should centre on whether in practice (a)  the shear phase lead would 
be reduced or (b )  the heat transfer lag would be increased. 

(i) The probes are approximately cylindrical in cross-section, and at  the 
station occupied by the film the steady boundary-layer thickness is about 
0.01-0.02 ern for velocities of 20-80 em s-l, while the cylinder diameter is about 
0.045 em (in Clark's experiments). This means that the quasi-steady wall shear 
rate is greater by about 30 yo than on a flat plate (Rosenhead 1963, p. 450). The 
argument by which the unsteady shear is predicted to have a phase lead over the 
outer velocity, because the flow near the wall responds more readily to the un- 
steady pressure gradient than that far away, is unaffected by the cylindrical 
geometry. If the correction to the quasi-steady shear is unchanged, the difference 
between the one- and two-term expansions could be significantly reduced. The 
phase lead could be reduced from in to about in in the case of figures 6 ( b )  and (c); 
this does not explain the whole discrepancy, but clearly deserves further investi- 
gation. 

(ii) If the probe is yawed, or not quite cylindrical, then the flow may be 
subjected to a pressure gradient. Pedley (19723) showed that a favourable 
pressure gradient cuts down the phase lead of shear over outer velocity. For 
two-dimensional flow impinging symmetrically on a 90" wedge, the relative 
magnitude of the term producing the phase lead (the second term of the expan- 
sion whose first term is quasi-steady) is reduced by about 75 %. However, i t  is 
inconceivable that the present probes induce such a strong pressure gradient 
(even a 10" wedge would have a stronger effect), and this factor cannot explain 
the discrepancy. 

(iii) The Reynolds number based on the mean velocity and the distance of the 
film from the leading edge of the probe, Re = UoXo/v, is only about 1000 in 
Clark's experiments (figure 6). Thus viscous boundary-layer theory may not be 
adequats to predict the shear over the film, but it is not easy to see how this 

34-2 
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inadequacy would reduce the phase lead of the shear over the outer velocity. 
Indeed, since the viscous region would be thicker than in boundary-layer theory 
one might expect the phase difference to  be greater if anything. Another argu- 
ment against this as the explanation of the discrepancy is the fact that one 
would expect the effect to increase as % falls, whereas the discrepancy is less 
in Seed & Wood’s experiments (figure 5) ,  where Re N“ 450. 

(iv) Thermal boundary-layer theory is inadequate for predicting steady heat 
transfer from a hot film if the P6clet number Pe = So 1 2 / ~  is less than about 400 
(Springer 1974, Table 1). For Clark’s experiments the mean P6clet number is 
about 1000, but for Seed & Wood’s it is only about 200, so the effect of departures 
from boundary-layer theory should be considered. The problem is not susceptible 
to immediate intuitive solution. On the one hand the presence of axial diffusion 
increases the effective length of the thermal boundary layer, which would 
indicate a greater time lag between heat transfer and wall shear. On the other 
hand in steady flow it increases the net heat-transfer rate in a manner only 
slightly dependent on the flow, which would suggest that the effect of unsteadi- 
ness would be less. Once again, however, if this effect were responsible for the 
discrepancy, one would expect a greater discrepancy in Seed & Wood’s experi- 
ment than in Clark‘s, not a smaller. 

(v) The hot films in both sets of experiments are only about 2.5 times longer 
in the cross-stream direction than in the streamwise direction, so lateral end 
effects are likely to be important. Again, the heat transfer in steady flow is 
increased by the lateral diffusion in a manner which is almost flow-independent, 
but the effect on the phase is difficult to assess. It probably does increase the 
phase lag, in the same way as diffusion through the substrate increases the 
phase lag though an increase in ‘thermal inertia’ (Bellhouse & Schultz 1967). 
This is the second of the possible explanations which cannot be ruled out as the 
explanation of the phase lag, and clearly warrants further theoretical and 
experimental study. 

(vi) The ‘thermal wake’ effect would, if important, cause the actual heat 
transfer to be reduced below the predicted heat transfer during shear reversal, 
not increased as indicated in figure 6 (c). It can have no effect on the phase near 
the maximum velocity. 

(vii) In steady flow over a flat plate, the curvature of the velocity profile at 
the wall is zero (in fact u K a, 5- &a: c5 + . . . , where 5 is the Blasius similarity 
variable and a, w 0.47) and therefore has no effect on heat transfer. In unsteady 
flow, however, the curvature is non-zero because the pressure gradient is non- 
zero, and we have 

u = U ( t )  (0.475 - . . . ) + zOU-l( 1-2c - 5, + . . .) 
(see, for example, equation (5) of PedIey 1976). The pressure-gradient term has 
the opposite sign to the perturbation in wall shear, and thus tends to counteract 
its effect, reducing the phase lead of prediction over experiment. However, the 
calculated difference turns out to be very small in the present examples, and 
cannot account for the discrepancy. 

Of all the potential fluid-mechanicaI reasons for the unwanted phase lead, the 
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only possibilities not yet ruled out are three-dimensional effects in the velocity 
and the temperature fields, and we cannot be certain of their importance without 
further research. Theseapart, the explanation can only be in probe construction 
or electronics, and these are unlikely because of the great care which both Clark 
and Seed & Wood took to eliminate such artifacts. Thus the phase discrepancy 
remains a mystery, but should not be allowed to obscure the fact that the theory 
agrees very well with experiment as far as the amplitude response (figure-7) 
and the general shape of the response throughout the cycle (see especially 
figure 6b)  are concerned. 

Finally we should remember that both probes were designed for use in blood, 
and the calibration experiments described here were performed in water (both 
Clark and Seed & Wood also used blood, but did not give the complete cycle 
response in that case). Blood has a similar thermal diffusivity to water at the 
same temperature, but a significantly greater viscosity, by a factor of about 4 
if the viscosity of whole blood is chosen, or by a factor of about 1.8 if it  is plasma 
viscosity which is relevant as suggested by Clark (1974). Thus the absolute value 
of the shear on the film will be decreased, but its phase lead over the outer flow 
is unaffected; the relationship of the heat transfer to the shear will also be 
unaffected as long as the theory of this paper is still applicable. The effective 
Reynolds number is reduced in blood, so of the above assumptions it is only (i) 
and (iii) which are called into question. Calibration studies for any probe must 
cover the same Reynolds number range as will be experienced in blood, in case 
the breakdown of these assumptions becomes more important. Furthermore 
blood is a particulate suspension, and its microstructure may well have an 
important effect on heat transfer when the thickness of the thermal boundary 
layer becomes as small as the red-celI diameter or spacing (about 10,um), which 
is the case for these experiments (see Seed & Wood 1970, figure 8). Thus calibra- 
tion ought to be done in blood as well as in water. 

I am very grateful to Dr W. A. Seed, Dr N. B. Wood and Dr C. Clark for 
letting me use some of their original data. I am also grateful to Prof. R. M. 
Nerem and the Physiological Fluid Mechanics Research Group at Ohio State 
University for their hospitality during the summer of 1976, when this paper 
was written with the support of National Science Foundation Grant ENG71- 
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